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the positions for the different models were insignificant, 
and in all cases the coordinates derived from Guinier 
data agreed with the corresponding single-crystal 
results within the e.s.d.'s. The lower precision of the 
coordinates derived from Guinier data is primarily a 
consequence of the limited region of reciprocal space 
which is sampled, sin 0/2 < 0.46 A-l :  the precision of 
the data itself is comparable with that of the single- 
crystal data. Temperature factors correlate highly with 
the absorption corrections and cannot be determined 
meaningfully from Guinier data: however, the results 
suggest that the differences between atomic temperature 
factors may be physically significant, albeit with rather 
low accuracy. 

The absorption correction calculated for a uniform 
specimen proved a poor approximation, doing little if 
anything to reduce either R w or the magnitude of the 
overall temperature factor (which is considered to be a 
measure of uncorrected systematic errors) for the 
structures refined. In one case, yttrium oxide, the 
absorption correction with an empirically optimized 
coefficient did significantly reduce R w and the e.s.d.'s of 
the parameters: however, the magnitude of the overall 
temperature factor increased greatly and the optimized 
absorption coefficient was more than five times the 
calculated average value, so that the physical signi- 
ficance of this correction is uncertain. 

In practice, it appears possible in many cases to 
correct effectively for systematic errors, including 
specimen absorption, by a single overall temperature 
factor (which may be either positive or negative) as 
proposed by Werner et al. (1979). Good agreement 
between the model and the data was obtained in this 

way for the three structures studied here. However, in 
some cases an improved fit, and hence more precise 
parameter estimates, may be achieved by including a 
correction of the form given by Sas & de Wolff (1966) 
for specimen absorption. Both these corrections are of 
an ad hoc nature, and are not to be considered as the 
direct physical consequence of thermal or absorption 
effects. 
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Abstract 

The large positive diffraction intensity changes on 
forbidden (222) planes, which are produced by simul- 
taneous diffraction, were observed when a perfect Si 
single crystal was excited into vibration. The excited 
Umweganregung effect is of the same order as the 

0567-7394/81/040459-07501.00 

diffraction intensity obtained on (111) planes under the 
same experimental conditions. The theoretical con- 
sideration is an extension of the lamellae model usually 
ust, d in the two-wave approximation. Both the theory 
and the experimental results demonstrate that such an 
effect may cause very large errors especially in diffrac- 
tion experiments with non-perfect single crystals. 

© 1981 International Union of Crystallography 
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1. Introduction 

Since the first experiment performed with X-rays by 
Renninger (1937), simultaneous reflection has been 
quantitatively studied by a number of authors and its 
effect on intensity data in the case of perfect crystals is 
well known. Besides the negative role that the presence 
of the simultaneous reflection may play in accurate 
measurements of a primary reflection intensity from 
single crystals, the observation of the enhancement of 
the anomalous transmission in the many-beam region 
angles (Bormann & Hartwig, 1965) has meant that the 
interest in simultaneous X-ray diffraction has con- 
tinuously increased. 

Simultaneous Bragg reflections of neutrons in mosaic 
crystals were studied by Moon & Shull (1964). These 
authors also developed an approximative theory of 
simultaneous reflections based on the mosaic-crystal 
model. Thompson & Grimes (1977) experimentally 
showed that neutron diffraction appears to have 
inherent difficulties and severe limitations resulting from 
the presence of simultaneous reflections when a mosaic 
single crystal whose space group has to be determined 
through the examination of very weak reflections is 
used. 

As the flux of thermal neutrons is usually not 
sufficiently high, the observation of such small effects 
with neutrons on perfect crystals is very difficult. A 
simple estimation shows that the intensity correspond- 
ing to the simultaneous reflection is in relation to the 
primary reflection intensity as the width of the 
dynamical maximum to the angular divergence of the 
incident beam. 

In our previous paper - hereafter referred to as paper 
I (Mikula, Vrhna, Michalec & Vhvra, 1979), we first 
gave a simple scheme to show how the intensity 
diffracted due to the Umweg effect can be made clearly 
observable with an elastically deformed perfect crystal. 
In the case of silicon (diamond structure), this effect 
occurs for those forbidden reflections with even indices 
only (e.g. 222); the multiple reflections operative in 
these cases may then be of the odd-odd type only. In 
our first experiment with the neutron wavelength 2 = 
1.05 x 10 -1 nm, we observed many excited Umweg 
peaks which were much more intense than the 
second-order reflection. For such a short wavelength, 

the Umweg peaks are very dense and can hardly be 
resolved experimentally. 

The purpose of this paper is to carry out a more 
extensive investigation (both theoretically and ex- 
perimentally) of the observed Umweg effect for ~. -- 
1.54 × 10 -1 nm, where the density of the Umweg peaks 
is much lower than for 2 -- 1.05 x 10 -1 nm. The 
measured intensities are interpreted in terms of the 
lamellae model (Michalec, Chalupa, Sedl~.kov~t, 
Mikula, Petr~ilka & Zelenka, 1974), according to which 
the diffracted intensity is proportional to the variation 

of the actual Bragg angle along the diffracted beam 
path in the deformed crystal instead of the structure 
factor. Clearly, for high deformations, this proportion- 
ality becomes saturated as soon as the intensity 
approaches the value predicted by the kinematical 
theory. 

2. Theoretical consideration 

Let us suppose that a beam of neutrons represented by 
the wave vector k 0 impinges on a surface of a perfect 
nonabsorbing single crystal at the exact setting for 
simultaneous three-beam diffraction (see Fig. 1). The 
conditions for simultaneous reflection on two systems 
of planes 1 and 2 represented by their reciprocal-lattice 
vectors gl and g2 can be expressed in the form 

ko.gl  = -  g2/2 (la)  

ko.g2 : - g22/2. (lb) 

If the reflection 1 is forbidden (structure factor F 1 = 
0), it is known that a non-zero intensity can be observed 
in the direction of the primary reflection, (k 0 + gl)/I k01, 
as a result of a cooperative action of two allowed 
reflections 2 and 3 (secondary and tertiary). It follows 
from (la)  and (lb) that, for a beam of neutrons 
reflected on a system of planes 2, the Bragg condition is 
simultaneously fulfilled on a system of planes 3 
represented by its reciprocal-lattice vector g3 = gl - g2 
(the Bragg angles corresponding to the systems 1, 2 and 
3 we denote 01, 0 2 and 03, respectively). 

(k0 + g2). (gl -- g2) = --(gl -- g2)2/2. (2) 

The wave vectors k 0 fulfilling ( la)  and (lb) form a 
line in the reciprocal space. Only that part of the line 
which is restricted by the angular collimation of an 
incident beam participates in simultaneous diffraction. 

It follows from the dynamical theory that, together 
with the neutrons exactly fulfilling ( la)  and (lb), the 

3"x ~ I / 
"\~x I /INCIDENT 

(s~o) ~ F, '~._ "",. ~2 

/ ',~",,\\\ "~" S~= 
% '\ \ 

Fig. 1. Schematic diagram of multiple Bragg reflection simulating a 
weak or forbidden reflection. 
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neutrons having the wave vector k -- k o + Ak o also 
participate in simultaneous diffraction, where Ak D is 
defined by the width of the dynamical maximum 
(Az~roff, Kaplow, Kato, Weiss, Wilson & Young, 
1974). The region of the wave vectors taking part in 
simultaneous diffraction is much smaller than the 
region corresponding to an allowed diffraction on a 
single system of planes, because in the three-wave case 
both the conditions ( la )  and ( lb)  must be fulfilled, while 
in the two-wave case fulfilling ( la )  is sufficient. A 
simple estimation shows that the diffraction intensities 
corresponding to the three- and two-wave cases are at 
the ratio of the width of the dynamical maximum to the 
angular collimation of the incident beam. So, in the case 
of perfect crystals, the observation of this small effect is 
very difficult. 

The region of the wave vectors k participating in 
simultaneous diffraction may be substantially enlarged 
if the single crystal is elastically deformed. It is known 
from the two-wave approximation that the reflected 
intensity from a sufficiently thick elastically deformed 
crystal (when the crystal thickness is many times higher 
than the extinction length) is proportional to the total 
change of the Bragg angle along the path of the incident 
neutrons through the crystal (Buras, Giebultowicz, 
Minor & Rajca, 1972). Usually, this proportionality, 
which enables the application of the lamellae model, 
can be observed in the wide scale of deformation. 

The lamellae model is also applicable in our 
three-wave case if we suppose that the most important 
role in the multiple diffraction process is played by 
neutrons successively and independently reflected on 
the system of planes 2 and 3 during their path through 
the crystal (see Fig. 1). It means that we take into 
account only the neutrons doubly reflected at two 
different points with generally different deformation. 
Further, we suppose that the mutual distance of these 
points is larger than the extinction length. 

Let u(r) be the displacement representing the 
deformation of a crystal at a point r, k the wave vector 
fulfilling conditions ( la )  and ( lb)  and k' = k + Ak is the 
wave vector of an incident neutron. The vectors of the 
local reciprocal lattice of a slightly deformed crystal are 
given by the relation (Takagi, 1969) 

g~(r) = g2-- V(g2"u(r))' (3) 

Similarly, 

g~(r) = ( g ~ -  g2) - V [ ( g ~ -  g2).  u(r)] .  (4)  

If an incident neutron of k' is reflected at a point r 1 -- 
(k0/Ik01)s 0 on the path through the crystal, its Bragg 
condition is of the following form: 

k' (r~). g~(r 1) = - - [g~(r l ) ]2 /2 .  (5)  

This neutron, with wave vector k '(r l)  + g~(rl), can be 
once more reflected on the system of planes 3 if, on its 
path through the crystal, at a point 

k ' ( r l )  + g i ( r l )  
r 2 =  r 1 + s 2 = r I + s2, (6)  

Ik' I 

the local Bragg condition 

(k '(r l)  + g~(rl)). (g'l(r2) -- g~(r2) ) 

= -- [g~(r2)-  g~(r2)]2/2 (7) 

is fulfilled. As u(rl) ¢ u(r2)  generally, the wave vector 
of the above-mentioned neutron does not suit the 
relationship 

k ' ( r l ) .g~(r l )  = - (g~(rl))2/2. (8) 

The quantities V(gE.u(rl)) and V[(g I - gE).u(r2)] are 
very small in comparison to g2 and (gl --  g2), 
respectively. So the deviation of the doubly reflected 
neutron from the (k 0 + g~)/I k01 direction is negligible. 
Neglecting the corrections of second order, we obtain 
from (1), (3)and (7) 

co(g2" U) I ( A k .  g2) = [ k l ~ A (So), 
coS2 r, 

(9) 

[ CO(gl"U) I co(g2"u) i (Ak.gl) = Ikl coSl I r2 "4- ~ r, 

co(g2"u)I]--B(so'S2)'cosl ,~ 

where 

co ko + gl co k0 + g2 
- - - V  and - - - - - V .  

cos I I k01 cos 2 I k01 

The solution of (9) can be written in the form 

gl X g2 Ag E -- Bgl" g2 
Ak(p,So,S2) -- P + gl 

I g 1 X gE I (gl X g2) 2 
Bg 2 -- Agl g2 

+ gu, (10) 
(gl x g2) 2 

where the variables s o and s 2 lie in the ranges (0, T/cos 
01) and [0, s~aX(so)], respectively. T is the thickness of 
the crystal and 01 is the Bragg angle. The coordinate 
s~ ax corresponds to the point rE, where a neutron with 
the wave vector k ' (r l )  + g~(rl), reflected on the system 
of planes 2, leaves the crystal without tertiary reflection 
(see Fig. 1). As the coordinate s 2 is measured from the 
point rl, it is clear that s~ ax is a function of s o. p is the 
free parameter dependent on the collimation of the 
incident beam and is independent of s o and s 2. It can be 
seen from (10) that this theoretical treatment is valid for 
sets of planes 1 and 2 for which g~ x g2 ~ 0,  i.e. planes 
1 and 2 not parallel. 

The intensity of the double reflected beam may be 
written in the form 

I =  f N(Ak) .R(Ak)  dV, (11) 
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where N(Ak) is the density of incident neutrons with the 
wave vectors k 0 + Ak related to the volume unit of 
reciprocal space and R(Ak) is the 'common' reflectivity 
of both the second and third set of planes. 

We assume in our model that R(Ak) is equal to 1 if 
Ak fulfils (10) and to zero for other Ak. The volume 
element d V can be expressed by the relation 

I ( OAk 
d V =  - - x - -  

Os o 

1 

OAk ] OAk 
]"  0p × d p d s  0ds2 (12) 

0A (So) OB(so, s2) 

Ig I X g21 OS o Os 2 
dp ds o ds  2. 

It is clear from (12) that only a deformation for 
which OA/Os o 4 :0  and OB/Os  2 =/= 0 are fulfilled 
simultaneously may excite the Umweg effect. 

In the case of a vibrating single crystal, the 
displacement u can be generally expressed in the form 

u(r,t) = u0.f(r ) sin (ot, (13) 

where u 0 is the vibration amplitude and o9 is the circular 
frequency. The form of the vector function fir) depends 
on the vibration mode (Cady, 1946; Petr£ilka, Mich- 
alec, Chalupa, Sedlfikovfi, Mikula & Cech, 1975). 

The above-mentioned lamellae model derived for the 
statistically slightly deformed crystal can be success- 
fully used in the case of a vibrating one if the time 
which a neutron spends in the crystal is negligible in 
comparison with the vibration period. Otherwise, it is 
necessary for every moment (e.g. when the neutron 
enters the crystal) to replace the time-dependent 
displacement u(r,t) by a suitable static displacement 
u(r) = u[r,t 0 + (s o + sl + s2)/V,,], in which the time t o is 
used as a parameter (Michalec, Mikula & Vr/ma, 
1975). The displacement u(r) relates to the deformation 
changes during the time which a neutron spends on the 
path through the crystal. Under these conditions, the 
problem of the vibrating crystal can be solved as a 
static one by the method derived above. 

An analytic solution may simply be found if the 
displacement u(r) can be expressed with a good 
approximation in the quadratic form 

1 ) 0U O 2 u (14) 
u ( r )  = u ( 0 )  + s i  + - s t  S • 

l,j=0 ,=0 20S  i OSj r=0 

From the relations from (9) to (14) with the above 
assumptions, we can say that the intensity of the double 
reflected beam is time modulated approximately as the 
square of a sinusoidal function and proportionally to 
the square of the vibration amplitude u o. 

3. Experimental arrangement 

The experiment was performed in the same experi- 
mental arrangement as was published in paper I. A 

beam of nearly monoenergetic neutrons with wave- 
length 2 = 1.54 x 10 -1 nm impinged on the vibrating 
silicon bar set for the forbidden 222 diffraction in the 
position of the symmetric Laue transmission. We used 
two vibration modes in this experiment. The bar with 
dimensions 200 x 30 x 6 mm was excited into flexural 
vibrations with the resonance frequency f = 1.4 kHz 
and the other bar with dimensions 110 x 14 x 3 mm 
was excited into longitudinal vibrations with the 
resonance frequency f = 39 kHz. The methods of the 
flexural and longitudinal excitation of crystal bars are 
well described in the papers of Petr~ilka, Vrzal, 
Michalec, Chalupa, Mikula & Zelenka (1970) and 
Mikula, Michalec & V/tvra (1976), respectively. The 
elastic displacement u(r,t) took place in the [ l i0 ]  
direction in the former case and in the [ 111 ] direction in 
the latter one. 

For the azimuthal rotation we used the goniometer 
head which enabled the setting of q~ in the angle interval 
from --23 to +23 o 

4. Experimental results 

According to the paper of Cole, Chambers & Dunn 
(1962), we performed computer calculations of the 
azimuthal angle positions of the (222) planes in which 
other sets of planes might be operative in the 
wavelength band from 1.52 to 1.56 x 10 -1 nm (see 
Fig. 2) corresponding to the A2 dispersion of the 
incident beam. 

Fig. 3 shows the intensity-azimuth dependence for 
the case of the flexurally vibrating crystal bar. Curve 
(a) corresponds to the non-vibrating crystal and curve 
(b) to the vibrating one with vibration amplitude 30 lam. 
The width of the incident beam was 5 mm and the beam 
axis crossed the bar in the middle. 

Fig. 4 presents the same azimuthal dependence for 
the case of the longitudinally vibrating crystal bar: 
curve (a) non-vibrating crystal and curve (b) vibrating 
one with amplitude 6 ~tm. The width of the incident 

1.5/, 

1.52 

13f { ~ }  ~31 

]13 ]57 
/ I 

15f 151 715535 ]3f ]15 111 
I I I I / | /  

t 
-< 
, . <  

1.56 

I I i ~ .  I 
15f 113 135 .~33 113 fil 

I I I 

0" 10" 20" 30" 

¢ ---.. 

Fig. 2. The azimuth-wavelength relationship for the 222 reflection 
in the diamond structure of a Si crystal. 
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beam was 30 mm and its axis crossed the bar at 15 mm 
from the end. It means that in both cases the incident 
beam impinged on the bar at the place of maximum 
displacement u. 

Fig. 5 experimentally depicts the result following 
from the approximative theory presented above, that in 
the region of the deformation, where the lamellae model 
can be used, the intensity of doubly diffracted neutrons, 
the so-called Umweg effect, is proportional to the 
square of the vibration amplitude. This amplitude 
dependence corresponds to the flexurally vibrating bar 
rotated to the azimuthal angle position ~ = 12.01 ° 
where the maximum Umweg effect was observed. 

Fig. 6 illustrates the intensity of the allowed 111 
reflection of the non-vibrating sample of dimensions 
2 0 0 x  3 0 x 6 m m f o r ~ = 0  ° , 2 = 1 . 5 4 x  10 - l n m a n d  
with incident beam width 5 mm. 

5. Discussion 

Fig. 2 shows that, for 2 = 1-54 x 10 -1 nm, about 15 
different secondary reflections may take part in multiple 
diffraction in the azimuthal angle interval ~ from 0 to 

o 
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e I 
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Fig. 3. The intensity-azimuth dependence for (a) the non-vibrating 
single crystal and (b) the flexurally vibrating crystal. The 
vibration amplitude was 30 ~tm. 
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Fig. 4. The intensity-azimuth dependence for (a) the non-vibrating 
single crystal and (b) the longitudinally vibrating crystal. The 
vibration amplitude was 6 pm. 
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Fig. 5. The dependence of the intensity of  doubly diffracted 
;neutrons, corresponding to the Umweg effect at • = 12.01 o, on 
the vibration amplitude u 0 of  the flexurally vibrating crystal bar. 
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Fig. 6. Rocking curve obtained in the (111) diffraction setting of  
the non-vibrating crystal bar for • = 0 ° and 2 --- 1.54 x 10- '  
am. 
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30 °. The experiment with the flexurally vibrating 
crystal demonstrates that the large Umweg effect takes 
place only at the angle q~ ~_ 12 ° (see Fig. 3). Further, 
we observed another effect at • _~ 19.5° which is 
about one order lower in comparison with the previous 
one. 

For an explanation of these Umweg effects, we turn 
now to an evaluation of the intensity defined by (11). In 
our case of flexural vibrations, in the middle of the bar 
the deformation functionf(r)  is well approximated by 

f ( r ) =  [ L  \lgll r 

and Vf(r) is parallel to gr  
After a simple calculation we obtain 

UO 2" 7C4 f (gl" g2 + gl" k) 2 
I G sin 2 cot dp dso ds2,(15) 

4k 2 L 4 . J  I gl  × g21 

where G is a constant and L is the length of the bar. 
The integration over p gives a constant. The limits of 
the integration over s o are 0 and TI k L/(k. n), where n is 
the unit vector parallel to [ l i0] .  The value of the 
coordinate s 2 is limited by the relations 

r2. gl  L P 
r E. n < T; --igll < --~-; r E. m < --~--, (16) 

where T, L and P mean the thickness, length and height 
of the bar, respectively, and m = (n x gl)/I n x gl I. 

For an infinitely large crystal plate of thickness T 
(P --, + m; L --, + oo), the contribution of the individ- 
ual planes is given by 

I '  = G' sin 2 mt cos 2 o~n2 sin 0 2 

x (2 sin 02 COS 0L12 --  sin 01) 2 

× [cos qJ sin 201 sin E alE 

× (COS q~ COS 01 + 2 sin 0 E COS anE)] -1 (17) 

where alE and an2 are the angles between the vectors gl 
and gE and n and g2. G' contains all the constants 
appearing during the integration in (15). 

The results of the calculation in relative units are 
shown in Table 1. I '  is the intensity calculated on the 
basis of (17) and I is the intensity corrected to the real 
dimensions of the flexurally vibrating bar. 

It can be seen that only four secondary planes can 
substantially contribute to multiple diffraction in the 
azimuthal angle interval from 0 to 23 o given by the 
experimental conditions. For these planes, the direction 
of s 2 is nearly perpendicular to n and so the diffracted 
beam on the secondary set of planes may have a 
relatively long path in the sample. The maximum 
intensity contributions come from the following 
secondary/tertiary reflections: i35/3 i3 at ~ = 11.41 o 
153/13i and 31i/513 at q~ = 12.01 ° and 151/131 at 
q~ = 19.6 o. The comparison of tJae ratio of the peak 

Table 1. Calculated intensities I' and I corresponding 
to an infinitely large crystal plate and to the crystal 
with dimensions used in the experiment, respectively, 

in relative units 

The sum of all contributions I' is taken to be 100%. 

g2 ~ z' (%) i (%) 
[15i] 1.06 1.46 0.57 
[113] 5.72 0 0 
[35i] 8.07 0.42 0.42 
[i35] 11.41 7.95 2.86 
[153] 12.01 28.44 23.94 
[31i] 12.01 28.44 23.94 
[13i] 13.28 0 0 
[i5i] 15.75 0 0 
[151] 19.61 30.88 4.10 
[535] 19.73 0.46 0.46 
[i15] 20.72 0.06 0.06 
[315] 26.56 0 0 
Iii31 26.65 0 0 
[33i1 26.81 1.89 1.89 
[iil] 29.89 0 0 

intensities at @ = 12.01 o and @ = 19.61 o shows good 
agreement between the theoretical and experimental 
results. The zero contributions introduced in Table 1 
follow from the special type of crystal deformation, i.e. 
u and V lul are parallel to n and gl, respectively. 

Because, independently of the type of deformation, 
the maximum effects give reflection planes for which 
the paths s• ax are largest, it is clear that in the case of 
the longitudinal vibrations the largest Umweg effect was 
observed at the same azimuthal angle ~ = 12.01°, as 
in the case of the flexural vibrations (see Fig. 4). 

The connection of the diffracted-intensity time 
modulation with the time-of-flight method made it 
possible to identify very simply the wavelength of the 
neutrons participating in simultaneous diffraction (see 
paper I). It was found that the Umweg peaks could be 
assigned to the neutrons of wavelength 2. On the other 
hand, the curves (a) in Figs. 3 and 4 can be assigned to 
the 2/2 neutrons. Comparing Figs. 3 and 4 (curves b), 
we can see that in the case of the longitudinal vibrations 
the 'background' to the Umweg effect is relatively high. 
This effect can be simply explained from the arrange- 
ment of the experiment. When the flexural vibrations 
are excited, the scalar product g444.u(r,t) is zero to a 
good approximation and the vibration has practically 
no effect on the 2/2 diffraction by the (444) planes. In 
the case of the longitudinal vibrations, g444 is parallel to 
u(r,t) and the vibration may have a significant influence 
on the intensity of the diffracted 2/2 neutrons (see 
paper I). 

The very large effect observed at q~ = 12.01 o reveals 
that the elastic deformation can excite Umweganregung 
whose intensity is comparable to or even higher than 
the intensity corresponding to an allowed reflection 
(compare Figs. 3 and 6). As the density of the Umweg 
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peaks excited by an elastic deformation is much lower 
for 2 = 1.54 x 10 -1 nm compared with it = 1.05 x 
10 -1 nm, the peaks can be experimentally eliminated by 
choosing a suitable azimuthal angle ~. 

The comparison of the experimental results with the 
theoretical ones in Table 1, as well as the proof of the 
quadratic intensity dependence on the vibration am- 
plitude (I  _ u02), show that the developed lamellae 
model successfully explains the basic phenomena of 
multiple diffraction observed in an elastically deformed 
single crystal. 

The authors wish to thank Miss B. Hagkov/t and Mr 
A. Dvo~/tk for their help in preparing the manuscript. 
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Abstract 

Starting with the expression for the intensity distri- 
bution in a structure image, it is shown that, for a very 
thin crystal and constant value of the transfer function, 
there is a one-to-one correspondence between the image 
and the projection of potential distribution in the crystal 
along the beam direction. This is formally equivalent to 
the treatment of weak phase objects by Cowley & 
Iijima [Z. Naturforsch. Teil A, (1972), 27, 445-451]. 
With a better approximation, applicable to slightly 
thicker crystals, it is shown that the image contrast is 
related not only to the projected potential distribution, 
but to the square of this function and the projected 
charge density. Simulated structure images of a silicon 
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crystal, oriented with its [011] direction parallel to the 
incident beam, show that the distance between the 
closely spaced spots is increased along the [001] 
direction, in agreement with experimental images, 
which is a consequence of not enough diffracted beams 
contributing to the image as a result of spatial and 
temporal incoherence of the incident electron beam. 

1. Introduction 

Cowley & Iijima (1972) showed that, at the proper 
defocus, there is a direct correlation between the 
intensity distribution in a structure image of a very thin 
crystal and the projection of the crystal structure. Their 
analysis was based on the expansion of the trans- 
mission function of a phase object, which represents the 
change of phase of the electron wave on traversing the 
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